41 research outputs found

    On the formal foundations of cash management systems

    Full text link
    [EN] Cash management aims to find a balance between what is held in cash and what is allocated in other investments in exchange for a given return. Dealing with cash management systems with multiple accounts and different links between them is a complex task. Current cash management models provide analytic solutions without exploring the underlying structure of accounts and its main properties. There is a need for a formal definition of cash management systems. In this work, we introduce a formal approach to manage cash with multiple accounts based on graph theory. Our approach allows a formal reasoning on the relation between accounts in cash management systems. A critical part of this formal reasoning is the characterization of desirable and non-desirable cash management policies. Novel theoretical results guide cash managers in the analysis of complex cash management systems.This work is partially funded by projects Logistar (H2020-769142), AI4EU (H2020-825619) and 2017 SGR 172.Salas-Molina, F.; Rodriguez-Aguilar, JA.; Pla Santamaría, D.; Garcia-Bernabeu, A. (2021). On the formal foundations of cash management systems. Operational Research. 21(2):1081-1095. https://doi.org/10.1007/s12351-019-00464-6S10811095212Baccarin S (2009) Optimal impulse control for a multidimensional cash management system with generalized cost functions. Eur J Oper Res 196(1):198–206Bollobás B (2013) Modern graph theory, vol 184. Springer, BerlinBondy JA, Murty USR (1976) Graph theory with applications, vol 290. Macmillan, LondonChartrand G, Oellermann OR (1993) Applied and algorithmic graph theory, vol 993. McGraw-Hill, New YorkConstantinides GM, Richard SF (1978) Existence of optimal simple policies for discounted-cost inventory and cash management in continuous time. Oper Res 26(4):620–636da Costa Moraes MB, Nagano MS, Sobreiro VA (2015) Stochastic cash flow management models: a literature review since the 1980s. In: Guarnieri P (ed) Decision models in engineering and management. Springer, Berlin, pp 11–28de Avila Pacheco JV, Morabito R (2011) Application of network flow models for the cash management of an agribusiness company. Comput Ind Eng 61(3):848–857Golden B, Liberatore M, Lieberman C (1979) Models and solution techniques for cash flow management. Comput Oper Res 6(1):13–20Gormley FM, Meade N (2007) The utility of cash flow forecasts in the management of corporate cash balances. Eur J Oper Res 182(2):923–935Gregory G (1976) Cash flow models: a review. Omega 4(6):643–656Makridakis S, Wheelwright SC, Hyndman RJ (2008) Forecasting methods and applications. Wiley, New YorkRighetto GM, Morabito R, Alem D (2016) A robust optimization approach for cash flow management in stationery companies. Comput Ind Eng 99:137–152Salas-Molina F (2017) Risk-sensitive control of cash management systems. Oper Res. https://doi.org/10.1007/s12351-017-0371-0Salas-Molina F, Pla-Santamaria D, Rodriguez-Aguilar JA (2018) A multi-objective approach to the cash management problem. Ann Oper Res 267(1):515–529Srinivasan V, Kim YH (1986) Deterministic cash flow management: state of the art and research directions. Omega 14(2):145–166Valiente G (2013) Algorithms on trees and graphs. Springer, Berli

    Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies

    Get PDF
    International audienceAbstractGastrointestinal disease caused by the apicomplexan parasite Cryptosporidium parvum is one of the most important diseases of young ruminant livestock, particularly neonatal calves. Infected animals may suffer from profuse watery diarrhoea, dehydration and in severe cases death can occur. At present, effective therapeutic and preventative measures are not available and a better understanding of the host–pathogen interactions is required. Cryptosporidium parvum is also an important zoonotic pathogen causing severe disease in people, with young children being particularly vulnerable. Our knowledge of the immune responses induced by Cryptosporidium parasites in clinically relevant hosts is very limited. This review discusses the impact of bovine cryptosporidiosis and describes how a thorough understanding of the host–pathogen interactions may help to identify novel prevention and control strategies

    CLINICAL PHARMACOKINETICS OF CARBOPLATIN IN CHILDREN

    No full text
    The present study was undertaken to evaluate in children the plasma pharmacokinetics of free carboplatin given at different doses and schedules and to evaluate the inter- and intrapatient variability and the possible influence of schedule on drug exposure. A total of 35 children (age range, 1-17 years) with malignant tumors were studied. All patients had normal renal function (creatinine clearance corrected for surface body area, above 70 ml min(-1) m(-2); range, 71-151 ml min(-1) m(-2)) and none had renal involvement by malignancy. Carboplatin was given at the following doses and schedules: 175, 400, 500, and 600 mg/ m(2) given as a l-h infusion; 1,200 mg/m(2) divided into equal doses and infused over 1 h on 2 consecutive days; and 875 and 1,200 mg/m(2) given as a 5-day continuous infusion. A total of 57 courses were studied. Carboplatin levels in plasma ultrafiltrate (UF) samples were measured both by high-performance liquid chromatography and by atomic absorption spectrophotometry. Following a 1-h infusion, carboplatin free plasma levels decayed biphasically; the disappearance half-lives, total body clearance, and apparent volume of distribution were similar for different doses. In children with normal renal function as defined by creatinemia and blood urea nitrogen (BUN) and creatinine clearance, we found at each dose studied a limited interpatient variability of the peak plasma concentration (C-max) and the area under the concentration-time curve (AUC) and a linear correlation between the dose and both C-max (r = 0.95) and AUC (r = 0.97). The mean value +/- SD for the dose-normalized AUC was 13+/-2 min m(2) 1(-1) (n = 57). The administration schedule does not seem to influence drug exposure, since prolonged i.v. infusion or bolus administration of 1,200 mg/m(2) achieved a similar AUC (13.78+/-2.90 and 15.05+/-1.44 mg ml(-1) min, respectively). In the nine children studied during subsequent courses a limited interpatient variability was observed and no correlation (r = 0.035) was found between AUC and subsequent courses by a multivariate analysis of dose, AUC, and course number. The pharmacokinetic parameters were similar to those previously reported in adults; however, a weak correlation (r = 0.52, P = 0.03) between carboplatin total body clearance and creatinine clearance varying within the normal range was observed. A dosing formula appears unnecessary in children with normal renal function since a generally well-predictable free carboplatin AUC is achieved following a given dose
    corecore